qxmt.models.base module

qxmt.models.base module#

class qxmt.models.base.BaseKernelModel(kernel, n_jobs=2)

Bases: BaseMLModel

Base class for kernel-based quantum machine learning models. This class is an abstract class for kernel-based quantum machine learning models. If you want to implement a new kernel-based quantum machine learning model, you should inherit this class. This class requires a kernel instance of BaseKernel class. The user can use any Feature Map or Kernel to be used, as long as it follows the interface of the BaseKernel class.

Parameters:
  • kernel (BaseKernel)

  • n_jobs (int)

__init__(kernel, n_jobs=2)

Initialize the kernel model.

Parameters:
  • kernel (BaseKernel) – kernel instance of BaseKernel class

  • n_jobs (int)

Return type:

None

get_feature_map()

Get the feature map of the model.

Returns:

feature map instance

Return type:

BaseFeatureMap

get_kernel_matrix(x_array_1, x_array_2)

Get the kernel matrix of the given data. This method is alias of kernel.compute_matrix().

Parameters:
  • x_array_1 (np.ndarray) – array of samples (ex: training data)

  • x_array_2 (np.ndarray) – array of samples (ex: test data)

Returns:

kernel matrix

Return type:

np.ndarray

plot_kernel_matrix(x_array_1, x_array_2)

Plot the kernel matrix of the given data. This method is alias of kernel.plot_matrix().

Parameters:
  • x_array_1 (np.ndarray) – array of samples (ex: training data)

  • x_array_2 (np.ndarray) – array of samples (ex: test data)

Return type:

None

plot_train_test_kernel_matrix(x_train, x_test)

Plot the kernel matrix of training and testing data. This method is alias of kernel.plot_train_test_matrix().

Parameters:
  • x_train (np.ndarray) – array of training samples

  • x_test (np.ndarray) – array of testing samples

Return type:

None

class qxmt.models.base.BaseMLModel

Bases: ABC

Base class for quantum machine learning models. This class is an abstract class for qunatum machine learning models. If you want to implement a new quantum machine learning model, you should inherit this class. For compatibility with QXMT framework, you should implement some methods such as fit, predict, save, load, get_params, and set_params.

abstract fit(X, y, **kwargs)

Fit the model with given data.

Parameters:
  • X (np.ndarray) – array of features

  • y (np.ndarray) – array of target value

  • kwargs (Any)

Return type:

None

abstract get_params()

Get the parameters of the model.

Returns:

dictionary of parameters

Return type:

dict

abstract load(path)

Load the model from the given path. [TODO]: standardize the save/load method using same library

Parameters:

path (str | Path) – path to load the model

Return type:

BaseMLModel

abstract predict(X)

Predict the target value with given features.

Parameters:

X (np.ndarray) – array of features

Returns:

array of predicted value

Return type:

np.ndarray

abstract save(path)

Save the model to the given path. [TODO]: standardize the save/load method using same library

Parameters:

path (str | Path) – path to save the model

Return type:

None

abstract set_params(params)

Set the parameters of the model.

Parameters:

params (dict) – dictionary of parameters

Return type:

None